
 [www.trendytechjournals.com] 5

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

A REVIEW ON TEST CASE PRIORITIZATION

TECHNIQUES
J. Paul Rajasingh

1
, S. Manikandan

2
, N. Sankar Ram

3

Department of Computer Science & Engineering

Sriram Engineering College, India

Abstract:

Test case prioritization aims at finding the

ideal ordering of test cases for testing in order to

provide test engineers maximum benefit, even if the

testing is stopped at some point due to various

constraints. Sometimes, the quantum of available

testing time is uncertain. For example, market

pressures may force the release of a product prior to

execution of all the test cases. Test case

prioritization can be used either in the initial testing

of software or in the regression testing of software.

During regression testing, information about

previous runs of test cases are normally used to

prioritize the test cases for subsequent runs. One of

the major goals of test case prioritization is to

increase the likelihood of revealing faults earlier in

the testing process, especially the most severe faults

and hence the rate of fault detection will be

improved. The rate of fault detection is a measure of

how quickly faults are detected within the testing

process. Early detection of faults can provide faster

feedbacks and allow the developers to begin

addressing faults very soon. In this study, the

various test prioritization techniques with their

evaluation metrics and the issues raised in each

study are presented. This will pave a way to propose

a better prioritization technique to minimize the

testing cost in distributed applications.

1. Introduction:

Regression testing validates the modified

software. It tests whether the changes done to the

code for the functionalities and the bugs fixed are

negatively impacting the existing functionalities or

not. Some of the new features coming in later

versions of software may affect the existing and

unchanged components of software. Hence,

regression testing is crucial to revalidate the existing

test cases. Rerunning all of the test cases in a test

suite can require a large amount of test effort. An

industrial collaborator [1] reported that a test suite

with 20000 lines of code required 7 weeks to run. If

the human resources are increased, the test duration

can be decreased, but still the cost of testing may

be expensive. Hence researchers developed various

techniques to reduce the cost of regression testing.

 The techniques include test suite

minimization, test case selection and test case

prioritization. Yoo and Harman [4] formally defined

and discussed about these techniques. Test suite

minimization removes redundant test cases

permanently to reduce the size of the test suite. The

fault detection capability of the test suite may be

decreased due to reduction in the number of test

cases. Test case selection techniques select an

appropriate subset of the existing test suite based on

information about the program, modified version and

test suite. It does not remove the test cases, but

selects the test cases that are related to the changed

portion of the source code. Test case prioritization

techniques identify the efficient ordering of test

cases to maximize certain goals, such as the rate of

fault detection or coverage rate. Though the test suite

minimization and test case selection techniques

reduce testing time, they can eliminate some

significant test cases that can detect certain types of

faults and hence leads to increase in the software cost

[6]

When the time needed to re-execute an

entire test suite is short, test case prioritization may

not be cost-effective. When the time needed to re

execute an entire test suite is sufficiently long, test

case prioritization techniques will be more beneficial.

Because test case prioritization techniques use the

entire test suite and reduce testing cost by

parallelizing debugging and testing activities.

In this paper, the major approaches for

prioritizing test cases for regression testing are

examined. Also the metrics used in estimating the

performance of the approaches are presented.

The next section of this paper precisely

describes the test case prioritization problem. Section

3 presents the various performance metrics of test

case prioritization. Section 4 presents the various

Received 20 October 2017
Revised 26 October 2017
Accepted 27 October 2017

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

 [www.trendytechjournals.com] 6

approaches of test case prioritization. Section 5

presents the overall conclusions and discussions for

future work.

2. Test Prioritization:

Test case Prioritization problem [22] was

first handled by Wong et al.

Test case prioritization increases the rate of fault

detection of test suites, detects the high-risk faults

earlier, increases the confidence in the reliability of

the system under the test at a faster rate, increases

the possibility of regression errors related to specific

code changes very early in testing process and

increases the coverage of code at a faster rate,

allowing code criterion to be met earlier

2.1 Algorithms for test case prioritization

Greedy algorithm, Additional Greedy

algorithm, Optimal algorithm, Hill Climbing

algorithm, Genetic algorithm, PORT and Ant Colony

optimization [4][6][7] are the approaches which have

been widely used for test case prioritization.

2.2 Datasets

Public data sets are stored in public

repositories like SIR (Software-artifacts

Infrastructure Repository). These datasets are

publicly available [8]. Private datasets mostly

belong to software companies and are not freely

distributed as public datasets. Partial datasets are

datasets that have been created using data from open

source projects and have not been distributed to the

community.

3. A Survey on Recent Research in Test

Prioritization:

The existing approaches fall into

the following categories:

3.1 Coverage based prioritization approach

Coverage based prioritization

approach orders test cases based on the coverage

of code components. The coverage of code

components includes statements and branches. The

assumption here is that the maximization of structural

coverage will increase the chance of the

maximization of fault detection. For example, if a test

case A covers more statements or branches over test

case B, then test case A may detect more faults than

test case B. Statement coverage prioritization

prioritizes test cases in terms of the total number of

statements covered by them. After counting the

number of statements, it sorts the test cases in

descending order. Branch coverage prioritization

prioritizes test cases in terms of the total number of

branches covered by them similar to the previous

one.

Coverage based prioritization approach

is a white box testing technique that inspects the code

directly. On the other hand, black box or functional

testing compares the program behavior with

requirement specification, without regard to how it

works internally.

Greg Rothermel et al [1] [2][3]

presented various coverage based prioritization

techniques. They used datasets from seven C

programs developed by researchers at Siemens

Corporation Research for a study of the fault

detection capabilities of control-flow and data-flow

coverage criteria and one C program developed for

the European Space Agency [24]. Average of the

percentage of faults detected (APFD) metric was

used to evaluate the performance. This metric

assumes that the cost of all the test cases and fault are

uniform. In practice, test cases and fault costs may

vary. Coverage-based white box techniques are

applicable for regression testing at the unit levels and

are harder to apply on complex systems.

3.2 Cost-aware prioritization approach

Cost-aware prioritization approach

incorporates test costs and fault severities into test

case prioritization. By enhancing the coverage based

techniques developed by [2][3], Elbaum [12] [27]

proposed Cost-aware prioritization approach by

incorporating the test cost and fault severity of each

test case . They used a C program called space which

is an interpreter for an array definition language

(ADL), developed for the European Space Agency

[24]. A new metric average percentage of faults per

cost (APFDc) was introduced. This metric takes into

account the varying fault severity and test cost.

3.3 History based Approach:

History based approach prioritizes test cases

based on the historical factors namely execution

history, fault detection effectiveness and coverage of

program entities. Based on these factors, priority of

the test cases are calculated and the test cases are

prioritized.

Jung-Min Kim and Adam Porter[9]

proposed an approach that assigns to each test case a

selection probability based on test historical

execution data. The test cases with higher

probabilities are executed till the testing time gets

exhausted. Here, the test cases are prioritized

according to the test histories namely execution

history, fault detection effectiveness and coverage of

program entities. Different test histories will yield

different test prioritizations. Y.

Fazlalizadeh [10][28] combined three kinds of

historical information about test cases to form a new

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

 [www.trendytechjournals.com] 7

equation. The priority of each test case is calculated

and the test cases are scheduled in the decreasing

order of the priority values.

 These approaches [9][10][28] used the

datasets from Siemens and space programs[24] and

the Average of the percentage of faults detected

(APFD) metric was used to evaluate the performance.

Yu-Chi Huang [23] proposed a history based

cost cognizant test case prioritization technique based

on the test case costs, fault severities and detected

faults of each test case from the latest regression

testing. It employs genetic algorithm to find the order

with the greatest rate of units of fault severity

detected per unit test cost. They considered 2 open

source tested programs namely flex and sed obtained

from the Software-artifact Infrastructure Repository

and the metric average percentage of faults per cost

(APFDc) was used to measure the performance.

3.4 Time-aware prioritization approach

 Time-aware prioritization approach

prioritizes test suite based on the given time

constraint. This approach does not prioritize the

entire test suite, but it produces a subset of test cases

which are prioritized and executed within the given

time budget. Walcott [15] presented a time-aware

prioritization approach using genetic algorithm. Lu

Zhang [31] presented a time-aware prioritization

approach using integer linear programming. Two java

programs namely JDepend and JTopas were used for

experimentation. These programs were available in

[8] [30] and the average of the percentage of faults

detected (APFD) metric was used to evaluate the

performance.

3.5 Probabilistic prioritization approach:

Probabilistic prioritization approach tries to

predict the probability that each test case will reveal

faults and uses these probabilities to prioritize the

test suite. In order to predict this probability, they

model regression testing by means of Bayesian

network in order to model uncertainty in systems [5].

They used 5 open source java programs namely ant,

jmeter, xml, nano and Galileo. These programs and

their test suites are all obtained from an infrastructure

supporting experimentation[29] and the average of

the percentage of faults detected (APFD) metric was

used to evaluate the performance.

3.6 Requirement - based prioritization approach:

 Requirement-based prioritization approach

prioritizes the test cases at system level by

considering prioritization factors for each

requirement. The factors are assigned values based

on the requirement properties. The test cases are then

mapped to software requirement and prioritized

according to the weight of test cases.

 Srikanth[13][15] presented a requirement-

based prioritization technique based on the factors

namely customer-assigned priority ,requirement

changes, fault impact of requirements and

implementation complexity. They analyzed 4 student

projects to test the effectiveness of their approach.

 Krishnamoorthi and Sahaya [25][26]

developed a similar approach with additional factors

namely completeness, traceability, usability and

application flow. Five student projects were system

tested to measure the effectiveness of their approach

and two industrial projects were chosen to validate

the approach.

 Both aimed at improving the rate of fault

detection. They have taken the total severity of faults

detected (TSFD) as the metric.

3.7 Risk based test prioritization approach

 Risk-based approaches used in

software testing typically focus on risks associated

with software requirements [16,17]. Amland [18,19]

defined risk exposure as a product of probability of

fault occurrence and the cost when the fault occurs in

the production. H. Srikanth [20] developed risk based

test prioritization approach which prioritizes the test

cases at system level. It considers the risks in

requirements categories and prioritize requirements

categories based on the risk levels of each category.

Risk exposure values of the requirements categories

are used to prioritize the requirements categories.

 Risk exposure (RE) of each requirement

category is calculated by multiplying the risk

likelihood (RL) of a requirements category and the

risk impact (RI) of the requirements category given

by

REi = RLi * RIi -------- (1)

 REi in eq.(1) is the risk exposure of

requirements category i and RLi is the risk likelihood

of the requirement category i, and RIi is the risk

impact of the category i. They used the number of

test cases of requirements categories to estimate the

risk likelihood of requirements categories. In order to

estimate the risk impact, they used business criticality

or fault proneness. Finally, these risk exposure values

of requirements categories are used to prioritize

requirements categories.

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

 [www.trendytechjournals.com] 8

 The approach was applied on an enterprise

level IBM analytics application to measure the

performance and average of the percentage of faults

detected (APFD) metric was used to evaluate the

performance. It considers all faults to be equally

severe. Also it uses the number of test cases to

estimate the probability of fault occurrence as it

assumes the number of test cases of a requirement

category reflects the functional complexity and the

number of functionalities of that requirement

category. The presence of higher number of

functionalities or more complex functions in a

requirement category increases the risk of failures in

the requirement category.

Test

Fault

1 2 3 4 5 6 7 8 9 10

A X X

B X X

C X X X X X X X

D X

E X X X

Table 1: Test cases and its detected faults

Fig. 1A Test Suite Fraction vs Faults Detected (in

%) for Test order ABCDE

Fig. 1B Test Suite Fraction vs Faults Detected (in

%) for Test order EDCBA

4. Evaluation Metric:

4.1. Average Percentage of Faults Detected

 The APFD is used to represent the weighted

“Average of the percentage of faults Detected" during

the execution of the test suite. The APFD values

range from 0 to 100; higher values imply faster

(better) fault detection rates.

 Let us take an example program with 10

faults and a suite of five test cases, A through E, with

fault detecting abilities as shown in table1. Suppose

the test cases are placed in order ABCDE to form a

prioritized test suite A. After running A, 2 of the 10

faults are detected. Thus 20% of the faults have been

detected after 20% of A has been used. After running

B, two more faults are detected and thus 40% of the

faults have been detected after 40% of the test suite

have been used. In Figure1A, the area inside the

inscribed rectangles represents the weighted

percentage of faults detected over the corresponding

percentage of the test suite. This area is the

prioritized test suite's average percentage faults

detected metric (APFD). The APFD is 50%.

When the order of test suite is changed to

EDCBA say test suite T2, the APFD value becomes

64%(Fig.1B) which implies test suite T2 is better than

test suite T1.

 Let T be a test suite containing n sequential

test cases, and let F be a set of m faults revealed by T.

Let T’ be an ordering of T. Let TFi be the first test

case in T’ that reveals fault i. The average percentage

of faults [1] detected during the execution of test

suite is calculated as

APFD = 1 –

 +

For the test sequence T1: ABCDE,

n=5,m=10

APFD = 1 –

 +

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

 [www.trendytechjournals.com] 9

 = 50%

For the test sequence T2: EDCBA

 APFD = 1 –

 +

 = 64%

4.2.Average Percentage of Faults Detected per

Cost (APFDc)

 APFD metric assumes that faults have equal

severity and test cases have equal costs. Average

Percentage of Faults Detected per Cost (APFDc) [12]

metric takes into account the varying fault severity

and test cost.

 Let T be a test suite containing n test cases

A,B,…E with costs t1,t2,…tn . Let F be a set of faults

revealed by T, and let f1,f2,…fm be the severities of

those faults. Let TFi be the first test case in T’ that

reveals fault i.

The cost cognizant average percentage of faults

detected during the execution of T’ is given by

APFDc =

∑ ∑

∑
 ∑

Unlike APFD metric, instead of representing

test suite fraction in the horizontal axis, percentage of

total test case cost incurred is represented and for

percentage of faults detected in the vertical axis,

percentage of total fault severity detected is

represented.

Under APFD metric, Since all the 10 faults

and five test cases are of equal cost, the orders

ABCDE and BACDE are equivalent in terms of

rate of fault detection. Hence the APFD for these

orders is 50%. Suppose B is twice as costly as A

demanding 2 minutes to execute whereas A needs

one minute. In terms of rate of fault detection,

ABCDE is preferable to BACDE.
For the test sequence T1: ABCDE

 APFDc = 28/60

 =46.67

 For the test sequence T2: BACDE

 APFDc = 26/60

 = 43.33

4.3 Average Severity of Faults Detected (ASFD)

 A severity value is assigned to each

fault. Total severity of faults detected (TSFD) is the

sum of severity values of the faults identified. The

ASFD for the requirement i (ASFDi) is the ratio of

the summation of severity values of faults identified

for that requirement to the TSFD[14].

4.4 Total Percentage of Faults Detected (TPFD)

 It measures the rate of detection of faults.

TPFD is the area under the curve when plotting a

graph with the fraction of requirement on X axis and

percentage of TSFD on Y axis [14].

4.5 Problem Tracking Reports (PTR) Metric

The PTR metric[12] calculates the

percentage of test cases that must be run before all

faults have been revealed. PTR is calculated as

follows:

PTR = nd / n

Where n is the total number of test cases ,

nd is the number of test cases needed to detect all

faults in the program.

4.6 Average Percentage Block Coverage (APBC)

The APFD is used to measure the weighted

“Average of the percentage of faults detected" during

the execution of the test suite. But this is not possible

to know the faults exposed by a test case in advance

and so this value can not be estimated before testing

takes place. Hence Coverage is used as a surrogate

measure. APBC[4] measures the rate at which a

prioritized test suite covers the blocks.

APBC = 1 –

 +

4.7 Average Percentage Decision Coverage

(APDC).

 Average percentage decision coverage [4]

measures the rate at which a prioritized test suite

covers the decisions (branches).

4.8 Average Percentage Statement Coverage

(APSC).
 Average Percentage Statement Coverage [4]

measures the rate at which a prioritized test suite

covers the statements.

5. Conclusions and Future Work:

 In this paper, we investigated several

approaches of test case prioritization. We also

presented various metrics and the datasets used to test

the software. Through these investigations, the

researchers can gain knowledge about the

prioritization techniques which can be applied at both

black box and white box levels of testing.

Though these test prioritization techniques

can improve the rate of fault detection and reduce the

cost of regression testing, the majority of them

require code coverage information which is very

expensive. Utilizing information about the

requirements for prioritization can discover more

error-prone test cases and reduce the cost. Further,

the research can be performed by adding additional

factors in the existing approaches, clubbing some of

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

 [www.trendytechjournals.com] 10

the approaches or both. These factors will help the

researchers to propose a better approach in order to

address the current problems in distributed

applications.

References:
[1] G. Rothermel, R. H. Untch, Chu Chengyun, and M.J.

Harrold, “Prioritizing Test Cases for Regression Testing”,

IEEE transactions on software engineering, vol.27,No.10,

pp.929-948,Oct. 2001.

[2] G. Rothermel, R. H. Untch, Chu Chengyun, and M.J.

Harrold, “Test Case Prioritization: An Empirical Study”,

Proceedings of the International Conference on Software

Maintenance, pp. 179, 1999.

[3] Sebastian Elbaum, Alexey G. Malishevsky, G.

Rothermel, “Prioritizing Test Cases for Regression

Testing”, Proceedings of the 2000 ACM SIGSOFT

international symposium on Software testing and

analysis,vol.25,Issue 5, pp. 102-112, sep. 2000

[4] Z. Li, M. Harman, and R. M. Hierons, “Search

Algorithms for Regression Test Case Prioritization”, IEEE

transactions on software engineering, vol.33, No.4, pp.227-

237,April 2007.

[5] S.Mirarab and L.Tahvildari, “An Empirical Study on

Bayesian Network-based Approach for Test Case

Prioritization”, Proc. International conference on software

testing, Verification and Validation,2008.

[6] Do H, Tahvildari, and Rothermel,” The effects of time

constraints on test case prioritization: A series of controlled

experiments”, IEEE transactions on software Engineering ,

vol.36,No.5,pp.593-610,Oct 2010

[7] A.Ansari, A.Khan,Alisha khan, K.

Mukadam,”Optimised Regression Test using Test Case

Prioritization”,Proc. Seventh International conference on

Communication, Computing and Virtualisation, pp.152-

160,2016

[8] Software-artifact Infrastructure Repository,

http://sir.unl.edu.

[9] J. M Kim, and A. Porter, “A History-Based Test

Prioritization Technique for Regression Testing in

Resource Constrained Environments”, Proc. 24th

International conf. Software Eng., pp. 119-129, May 2002.

[10] A. Khalilian, M. A. Azgomi, Y. Fazlalizadeh, ”An

improved method for Test Case Prioritization by

incorporating historical

test case data”, Science of Computer Programming ,

vol.78,No.1,pp.93-116,Nov. 2012.

[11] H. Park, H. Ryu, and J. Baik, “Historical Value-Based

Approach for Cost-cognizant Test Case Prioritization to

Improve the Effectiveness of Regression Testing”,

Proceedings of the international conferences on secure

system integration and reliability improvement ,pp.39-46,

July 2008.

[12] Alexey G. Malishevsky,Joseph, Gregg Rothermel,

Sebastian Elbaum, “Cost-cognizant Test Case

Prioritization”, Technical Report TR-UNL-CSE-2006-0004

[13] H.Srikanth, L.Williams and J.Osborne,” System test

case prioritization of new and regression test

cases”,International symposium of empirical software

engineering”, 2005

[14] H.Srikanth and L.Williams ,” On the economics of

requirements-based test case priritization ”, Proceedings of

the seventh international workshop on Economics-driven

software engineering research, 2005

[15]A. Walcott, M. Soffa, G. Kapfhammer, R. Roos,

”Time aware test suite prioritization”, Proceedings of ACM

international symposium on software testing and analysis,

pp.17-20, July 2006

[16]J. Bach, ”Risk and requirements-based testing ”,IEEE

computers, pp.120-122,Feb 1999

[17] C. Kaner, J.Bach, ”Lessons learned in software testing:

A context driven approach“,Wiley, New York ,2002

[18] S. Amland,” Risk based testing and metrics”,

International conference on software testing, analysis and

review ,Eurostar , November 1999.

[19] S. Amland, ”Risk based testing: Risk analysis

fundamentals and metrics for software testing including a

financial application case study”, Journal of systems and

software, vol.53,no., pp.287-295, 2000.

[20] H.Srikanth, C. Hettiarachchi, H. Do,” Requirements

based test prioritization using risk factors: An industrial

study”, Information and Software Technology, vol.69,

pp.71-83, 2016

[21] A.Malishevsky, S.Elbaum and G.Rothermel,”

Incorporating varying test costs and fault severities into test

case prioritization”, Proceedings of the 23rd International

Conference on Software Engineering, pp. 329-338, 2005

[22] W. Wong, J. Horgan, S. London and H. Agarwal,” A

study of effective regression testing in practice”,

Proceedings of eighth international symposium on software

reliability engineering, pp. 264-275, 1997

[23] Yu-Chi Huang, Kuan-Li Peng and Chin-YU Huang, “

A history-based cost cognizant test case prioritization

technique in regression testing”, Journal of systems and

software , pp.626-637, 2012

[24] M. Hutchins, H. Foster, T. Goradia, and T.Ostrand,

“Experiments on the Effectiveness of Dataflow and Control

flow-Based Test Adequacy Criteria”, Pro. 16th Intl Conf.

Software Engg., pp.191-200, May 1994

[25] R. Krishnamoorthi, S. Sahaya Arul Mary,” Factor

oriented requirement coverage based system test case

prioritization of new and regression test cases”,Information

and Software Technology, vol.51,pp.799-808, 2009.

[26] Krishnamoorthi Ramasamy, S. Sahaya Arul Mary,”

Incorporating varying requirement priorities and costs in

test case prioritization for new and regression

testing”,International conference on computing,

communication and networking, Dec 2008.

[27] Sebastian Elbaum ,Alexey Malishevsky, Gregg

Rothermel, “Incorporating Varying Test Costs and Fault

Severities into Test Case Prioritization”,Proceedings of the

23rd International Conference on Software Engineering,

May, 2001.

[28] Y. Fazlalizadeh ,A. Khalilian, M. A. Azgomi, S. Parsa,

”Incorporating historical test case performance data and

resource constraints into test case prioritization”,

Proceedings of the 3rd International conference on tests and

International Journal of Trendy Research in Engineering and Technology (IJTRET)

Volume 1 Issue 2 Sep- 2017

 [www.trendytechjournals.com] 11

proofs, in: Lecturer notes in computer science, vol.5668,

pp.43-576,2009

[29] H. Do, S. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact”, Empirical Software
Engineering: An International Journal, vol.10,

pp.405-435,2005

[30] http:// www.clarkware.com / software / JDepend.html

[31] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, Hong
Mei,”Time-aware test case prioritization using Integer
Linear Programming”, Proceedings of the eighteenth
international symposium on Software testing and analysis,
pp:213-224, 2009.

[1] J Paul Rajasingh completed B.E in Computer Science
& Engineering, M.E in Software Engineering and currently
doing Ph.D. His areas of interest include software
engineering, data mining and data analytics. He is presently
working as Assistant Professor in Sriram Engineering
college, Tamilnadu, India

[2] S. Manikandan holds M.E in Computer Science and
Engineering and Ph.D in Image Processing. He has 15 years

of teaching experience in engineering colleges in

tamilnadu. He is presently working as Professor & Head

in Sriram Engineering college, Tamilnadu, India. His areas

of interest include Software Engineering, Image Processing

and Operations Research.

[3] N. Sankar Ram holds M.E in Computer Science and
Engineering and Ph.D in Software Engineering. He has 18
years of teaching experience in engineering colleges in
tamilnadu. He is presently working as Professor in Sriram
Engineering college, Tamilnadu, India. His areas of interest
include Software Engineering and Network Security

Biographies

